Как найти высоту усеченого конуса зная его диаметры и угол Есть усиленный конус, D=9 d=3 угол 75°. Как найти его высоту?

28 Дек в 19:40
2 +2
0
Ответы
1

Чтобы найти высоту усеченного конуса, зная его радиусы (половины диаметров) и угол наклона, можно воспользоваться тригонометрическими соотношениями.

Сначала определим радиусы усеченного конуса:

Радиус большого основания: ( R = \frac{D}{2} = \frac{9}{2} = 4.5 )Радиус малого основания: ( r = \frac{d}{2} = \frac{3}{2} = 1.5 )

Найдем разницу радиусов:
[
h = R - r = 4.5 - 1.5 = 3
]

Далее будем использовать угол наклона ( \alpha = 75° ). Высота ( H ) усеченного конуса можно найти из разности радиусов и угла наклона, используя тангенс угла:
[
\tan(\alpha) = \frac{h}{H}
]

Перепишем это уравнение для нахождения высоты ( H ):
[
H = \frac{h}{\tan(\alpha)} = \frac{3}{\tan(75°)}
]

Теперь подставим значение в формулу. Тангенс угла 75° можно найти с помощью калькулятора:
[
\tan(75°) \approx 3.732
]
Следовательно,
[
H \approx \frac{3}{3.732} \approx 0.804
]

Итак, высота усеченного конуса составляет примерно 0.804 единиц.

28 Дек в 19:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 95 172 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир