(3+4i)/(2-7i) = (3+4i)(2+7i)/(2^2 - (7i)^2) = (6+21i + 8i - 28)/(4 + 49) = (- 22 + 29i)/53 or approximately -0.4151 + 0.5472i
(-i+2)/(3+6i) = (-i+2)(3-6i)/(3^2 - (6i)^2) = (-3 + 6i + 6i + 12)/(9 + 36) = (9 + 12i)/45 or approximately 0.2 + 0.267i
2/i = 2/i * i/i = 2i/i^2 = -2i
(8-5i)/2 = 8/2 - 5i/2 = 4 - 2.5i
(18+3i)/(9-2i) = (18+3i)(9+2i)/(9^2 - (2i)^2) = (162 + 36i + 27i + 6i^2)/(81 + 4) = (162 + 63i - 6)/(85) = (156 + 63i)/85 or approximately 1.8353 + 0.7412i
(3+4i)/(2-7i) = (3+4i)(2+7i)/(2^2 - (7i)^2) = (6+21i + 8i - 28)/(4 + 49) = (- 22 + 29i)/53 or approximately -0.4151 + 0.5472i
(-i+2)/(3+6i) = (-i+2)(3-6i)/(3^2 - (6i)^2) = (-3 + 6i + 6i + 12)/(9 + 36) = (9 + 12i)/45 or approximately 0.2 + 0.267i
2/i = 2/i * i/i = 2i/i^2 = -2i
(8-5i)/2 = 8/2 - 5i/2 = 4 - 2.5i
(18+3i)/(9-2i) = (18+3i)(9+2i)/(9^2 - (2i)^2) = (162 + 36i + 27i + 6i^2)/(81 + 4) = (162 + 63i - 6)/(85) = (156 + 63i)/85 or approximately 1.8353 + 0.7412i