Для решения этой задачи нам необходимо воспользоваться уравнением колебательного движения точки на струне:
y(t) = A*sin(2πft),
где y(t) - положение точки в момент времени t, A - амплитуда колебаний, f - частота колебаний.
Из условия задачи известно, что A = 1мм = 0.001м и f = 1кГц = 1000Гц = 1000Гц. Подставим эти значения в уравнение:
y(t) = 0.001sin(2π1000*t).
Теперь найдем положение точки в момент времени t = 0.2 с:
y(0.2) = 0.001sin(2π10000.2) ≈ 0.001sin(1256.64) ≈ 0.001*(-0.443) ≈ -0.000443 м.
Таким образом, точка пройдет путь в 0.000443 м за 0.2 с.
Для решения этой задачи нам необходимо воспользоваться уравнением колебательного движения точки на струне:
y(t) = A*sin(2πft),
где y(t) - положение точки в момент времени t, A - амплитуда колебаний, f - частота колебаний.
Из условия задачи известно, что A = 1мм = 0.001м и f = 1кГц = 1000Гц = 1000Гц. Подставим эти значения в уравнение:
y(t) = 0.001sin(2π1000*t).
Теперь найдем положение точки в момент времени t = 0.2 с:
y(0.2) = 0.001sin(2π10000.2) ≈ 0.001sin(1256.64) ≈ 0.001*(-0.443) ≈ -0.000443 м.
Таким образом, точка пройдет путь в 0.000443 м за 0.2 с.