Кинетическая энергия автомобиля выражается формулой: [K = \frac{1}{2}mv^2]
Где (m) - масса автомобиля и (v) - скорость. Пусть кинетическая энергия увеличилась вдвое, то есть (2K), тогда:
[2K = \frac{1}{2}m(v_{новая}^2)]
Так как (K = \frac{1}{2}mv^2), то:
[2(\frac{1}{2}mv^2) = \frac{1}{2}m(v_{новая}^2)]
[mv^2 = \frac{1}{2}m(v_{новая}^2)]
[v^2 = \frac{1}{2}v_{новая}^2]
[v_{новая} = \sqrt{2}v]
Таким образом, для того чтобы кинетическая энергия автомобиля увеличилась вдвое, он должен двигаться со скоростью (v_{новая} = \sqrt{2} \cdot 10 \ м/с \approx 14,14 \ м/с).
Кинетическая энергия автомобиля выражается формулой:
[K = \frac{1}{2}mv^2]
Где (m) - масса автомобиля и (v) - скорость. Пусть кинетическая энергия увеличилась вдвое, то есть (2K), тогда:
[2K = \frac{1}{2}m(v_{новая}^2)]
Так как (K = \frac{1}{2}mv^2), то:
[2(\frac{1}{2}mv^2) = \frac{1}{2}m(v_{новая}^2)]
[mv^2 = \frac{1}{2}m(v_{новая}^2)]
[v^2 = \frac{1}{2}v_{новая}^2]
[v_{новая} = \sqrt{2}v]
Таким образом, для того чтобы кинетическая энергия автомобиля увеличилась вдвое, он должен двигаться со скоростью (v_{новая} = \sqrt{2} \cdot 10 \ м/с \approx 14,14 \ м/с).