Обозначим AB = BC = x. Так как треугольник ABC - равнобедренный, то BE - медиана, а также высота и биссектриса. Из условия получаем, что AC = 2 √ 57 = 2x по теореме Пифагора AB^2 + BC^2 = AC^2. x^2 + x^2 = (2√57)^2, 2x^2 = 4 * 57, 2x^2 = 228, x^2 = 114, x = √114 = 2√(19). Ответ: AB = BC = 2√19.
Обозначим AB = BC = x. Так как треугольник ABC - равнобедренный, то BE - медиана, а также высота и биссектриса.
Из условия получаем, что AC = 2 √ 57 = 2x по теореме Пифагора AB^2 + BC^2 = AC^2.
x^2 + x^2 = (2√57)^2,
2x^2 = 4 * 57,
2x^2 = 228,
x^2 = 114,
x = √114 = 2√(19).
Ответ: AB = BC = 2√19.