Спочатку знайдемо довжину обох основ:
Нехай перша основа трапеції дорівнює 3x, а друга основа дорівнює 5x.
Ми знаємо, що середня лінія трапеції (яка є середнім арифметичним довжини обох основ) дорівнює 16 см. Тому ми можемо записати рівняння:
(3x + 5x) / 2 = 168x / 2 = 164x = 16x = 4
Отже, перша основа трапеції дорівнює 3 4 = 12 см, а друга основа дорівнює 5 4 = 20 см.
Спочатку знайдемо довжину обох основ:
Нехай перша основа трапеції дорівнює 3x, а друга основа дорівнює 5x.
Ми знаємо, що середня лінія трапеції (яка є середнім арифметичним довжини обох основ) дорівнює 16 см. Тому ми можемо записати рівняння:
(3x + 5x) / 2 = 16
8x / 2 = 16
4x = 16
x = 4
Отже, перша основа трапеції дорівнює 3 4 = 12 см, а друга основа дорівнює 5 4 = 20 см.