В треугольнике ABC угол C равен 90, sin A=корень из 7/4.Найдите длину стороны АС

20 Сен 2022 в 19:40
66 +1
0
Ответы
1

По теореме Пифагора в прямоугольном треугольнике:
sin(A) = AC/BC
AC = sin(A) * BC

Так как sin(A) = √7/2, то мы можем записать:
AC = (√7/2) * BC

Также, по теореме Пифагора:
AC^2 + BC^2 = AB^2
AC^2 + (AC * √3)^2 = BC^2
AC^2 + 3AC^2 = BC^2
4AC^2 = BC^2

Из этих двух уравнений мы можем выразить длину стороны AC:
4AC^2 = (√7/2)^2 BC^2
4AC^2 = 7/4 BC^2
AC^2 = 7/16 BC^2
AC = (√7/4) BC

Таким образом, длина стороны AC равна √7/4 умножить на длину стороны BC.

16 Апр в 17:54
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир