Нехай сторони прямокутника мають довжини а і b, сторона ромба - d, сторона квадрата - s.
Оскільки периметр кожного фігури дорівнює 20 см, то маємо наступні рівності:
2(a + b) = 20,4d = 20,4s = 20.
З першого рівняння отримуємо: a + b = 10. Розглянемо різні варіанти довжин сторін прямокутника, які задовольняють це рівняння.
Для прямокутника можливі наступні варіанти: (1,9), (2,8), (3,7), (4,6), (5,5).
Далі, з другого рівняння отримуємо: d = 5. Отже, існує лише один ромб з такими сторонами.
З третього рівняння отримуємо: s = 5. Отже, існує лише один квадрат з такою стороною.
Таким чином, можливість розбити 20 см на сторони вказаних фігур таким чином: один ромб, один квадрат та п'ять прямокутників.
Нехай сторони прямокутника мають довжини а і b, сторона ромба - d, сторона квадрата - s.
Оскільки периметр кожного фігури дорівнює 20 см, то маємо наступні рівності:
2(a + b) = 20,
4d = 20,
4s = 20.
З першого рівняння отримуємо: a + b = 10. Розглянемо різні варіанти довжин сторін прямокутника, які задовольняють це рівняння.
Для прямокутника можливі наступні варіанти: (1,9), (2,8), (3,7), (4,6), (5,5).
Далі, з другого рівняння отримуємо: d = 5. Отже, існує лише один ромб з такими сторонами.
З третього рівняння отримуємо: s = 5. Отже, існує лише один квадрат з такою стороною.
Таким чином, можливість розбити 20 см на сторони вказаних фігур таким чином: один ромб, один квадрат та п'ять прямокутників.