Для нахождения длины хорды можно воспользоваться теоремой Пифагора. По условию, расстояние от центра окружности до хорды равно 5 см, а радиус окружности равен 13 см.
Получим прямоугольный треугольник, в котором одна сторона равна 5 см (от центра до хорды), а вторая сторона равна 13 см (радиус окружности). Пусть третья сторона (хорда) равна х.
Применим теорему Пифагора: a^2 + b^2 = c^2
Где a и b - катеты, а c - гипотенуза.
5^2 + x^2 = 13^2
25 + x^2 = 169
x^2 = 169 - 25
x^2 = 144
x = √144
x = 12
Таким образом, длина хорды окружности радиусом 13 см и расстоянием от центра до хорды 5 см равна 12 см.
Для нахождения длины хорды можно воспользоваться теоремой Пифагора. По условию, расстояние от центра окружности до хорды равно 5 см, а радиус окружности равен 13 см.
Получим прямоугольный треугольник, в котором одна сторона равна 5 см (от центра до хорды), а вторая сторона равна 13 см (радиус окружности). Пусть третья сторона (хорда) равна х.
Применим теорему Пифагора: a^2 + b^2 = c^2
Где a и b - катеты, а c - гипотенуза.
5^2 + x^2 = 13^2
25 + x^2 = 169
x^2 = 169 - 25
x^2 = 144
x = √144
x = 12
Таким образом, длина хорды окружности радиусом 13 см и расстоянием от центра до хорды 5 см равна 12 см.