Отрезки двух наклонных, проведенных из одной точки к плоскости, равны 15см и 20см. Проекция одного из этих отрезков равна 16см. Найдите проекцию другого отрезка.
Пусть AB и AC - отрезки, проведенные из точки A к плоскости. Пусть проекция AB на плоскость равна 16 см, то есть AD = 16 см. Также известно, что длина AB = 15 см, а длина AC = 20 см.
Так как угол между отрезком и его проекцией прямой, то треугольник ABD и треугольник ACD подобны, так как имеют равные углы при вершине A.
Используем пропорциональность сторон треугольников: AD/AB = AC/AD 16/15 = 20/х 16х = 300 х = 18,75
Таким образом, проекция отрезка AC равна 18,75 см.
Пусть AB и AC - отрезки, проведенные из точки A к плоскости. Пусть проекция AB на плоскость равна 16 см, то есть AD = 16 см. Также известно, что длина AB = 15 см, а длина AC = 20 см.
Так как угол между отрезком и его проекцией прямой, то треугольник ABD и треугольник ACD подобны, так как имеют равные углы при вершине A.
Используем пропорциональность сторон треугольников:
AD/AB = AC/AD
16/15 = 20/х
16х = 300
х = 18,75
Таким образом, проекция отрезка AC равна 18,75 см.