АВ и ВС - отрезки касательных, проведенных из точки В к окружности с центром О. ОА=16 см; а радиусы, проведенные к точкам касания, образуют угол, равный 120 градусов. чему равен отрезок ОВ. 1) 8 см 2) 16 см 3) 32 см 4) 24 см

18 Фев 2020 в 19:44
138 +1
0
Ответы
1

Ответ: 16 см

Обозначим точки касания как D и E. Так как AD и BE - радиусы, то треугольники AOB и COE равнобедренные. Учитывая, что угол в центре равен углу на окружности, получаем, что ∠AOB = 60 градусов. Теперь рассмотрим треугольник AOB: AB = 2 OB sin(60 градусов) = OB √3.
Таким образом, OB = AB / √3 = 16 / √3 = 16 / (√3) (√3)/(√3) = 16√3 / 3 ≈ 9.24 см.

18 Апр в 17:05
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 718 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир