Передача растрового графического изображения размером 600*400 пикселей с помощью модема со скоростью 28800 бит/сек потребовала 1 мин 20 сек. Определите количество цветов в палитре, использовавшейся в этом изображении.
Для определения количества цветов в палитре изображения можно воспользоваться формулой:
Количество цветов = 2^битность
Где битность вычисляется по формуле:
битность = log2(количество цветов)
Зная, что размер изображения составляет 600*400 пикселей, а передача изображения заняла 1 мин 20 сек (или 80 секунд), можем вычислить скорость передачи данных:
Общее количество бит, переданных за 1 мин 20 сек = 28800 бит/с * 80 сек = 2304000 бит
Так как наше изображение имеет размер 600*400 пикселей, сначала оценим размер одного пикселя в битах:
Размер одного пикселя = общее количество бит / количество пикселей = 2304000 бит / (600*400 пикселей) ≈ 9.6 бит/пиксель
Теперь, используя формулу для вычисления количества цветов в палитре, найдем битность:
битность = log2(цвета), где цвета - количество цветов в палитре
9.6 бит/пиксель = log2(цвета)
цвета = 2^9.6 ≈ 934 цвета
Таким образом, количество цветов в палитре, использовавшейся в данном изображении, составляет примерно 934 цвета.
Для определения количества цветов в палитре изображения можно воспользоваться формулой:
Количество цветов = 2^битность
Где битность вычисляется по формуле:
битность = log2(количество цветов)
Зная, что размер изображения составляет 600*400 пикселей, а передача изображения заняла 1 мин 20 сек (или 80 секунд), можем вычислить скорость передачи данных:
Общее количество бит, переданных за 1 мин 20 сек = 28800 бит/с * 80 сек = 2304000 бит
Так как наше изображение имеет размер 600*400 пикселей, сначала оценим размер одного пикселя в битах:
Размер одного пикселя = общее количество бит / количество пикселей = 2304000 бит / (600*400 пикселей) ≈ 9.6 бит/пиксель
Теперь, используя формулу для вычисления количества цветов в палитре, найдем битность:
битность = log2(цвета), где цвета - количество цветов в палитре
9.6 бит/пиксель = log2(цвета)
цвета = 2^9.6 ≈ 934 цвета
Таким образом, количество цветов в палитре, использовавшейся в данном изображении, составляет примерно 934 цвета.