Задача по математике Не могу понять. К примеру если два объекта двигаются по одной прямой скажем 10 км длиною и один объект движется со скоростью 5 км/ч соответственно он пройдет дистанцию за час а второй объект половину пути пройдет со скоростью в два раза выше чем первый , 20км/ч а второю половину со скоростью в два раза ниже 5 км/ч то второй объект приезжает позже на 15 минут. Почему? Вдвое увеличили, потом вдвое уменьшили , должно уравновеситься.
Давайте обозначим время, за которое первый объект проходит всю дистанцию, как ( t_1 ), а время, за которое второй объект проходит всю дистанцию, как ( t_2 ).
Для первого объекта ( t_1 = \frac{10\ км}{5\ км/ч} = 2\ ч ).
Для второго объекта время прохождения первой половины пути будет равно ( t_2 = \frac{5\ км}{20\ км/ч} = 0.25\ ч = 15\ мин ). Для второго объекта время прохождения второй половины пути будет равно ( t_2 = \frac{5\ км}{5\ км/ч} = 1\ ч ).
Итак, общее время, за которое второй объект проходит всю дистанцию, будет равно ( t_2 = 0.25\ ч + 1\ ч = 1.25\ ч = 1\ ч\ и\ 15\ мин ).
Таким образом, второй объект приезжает на 15 минут позже, потому что он тратит 15 минут на то, чтобы пройти первую половину расстояния со скоростью 20 км/ч и еще 15 минут на то, чтобы пройти вторую половину расстояния со скоростью 5 км/ч.
Давайте обозначим время, за которое первый объект проходит всю дистанцию, как ( t_1 ), а время, за которое второй объект проходит всю дистанцию, как ( t_2 ).
Для первого объекта ( t_1 = \frac{10\ км}{5\ км/ч} = 2\ ч ).
Для второго объекта время прохождения первой половины пути будет равно ( t_2 = \frac{5\ км}{20\ км/ч} = 0.25\ ч = 15\ мин ).
Для второго объекта время прохождения второй половины пути будет равно ( t_2 = \frac{5\ км}{5\ км/ч} = 1\ ч ).
Итак, общее время, за которое второй объект проходит всю дистанцию, будет равно ( t_2 = 0.25\ ч + 1\ ч = 1.25\ ч = 1\ ч\ и\ 15\ мин ).
Таким образом, второй объект приезжает на 15 минут позже, потому что он тратит 15 минут на то, чтобы пройти первую половину расстояния со скоростью 20 км/ч и еще 15 минут на то, чтобы пройти вторую половину расстояния со скоростью 5 км/ч.