Всош по математике Пятиугольник ABCDE вписан в окружность, причем АВ = ВС. Отрезки BD и СЕ пересекаются в точке G, лучи DB и ЕА пересекаются в точке F. Известно, что CG = 1, DG: GB: BF = 5:2:3 Найдите длину отрезка F A
Поскольку АВ=ВС, то угол ABC равен углу ACB, так что произведем замену углов:
АВС=2α, ВСА=2β. Тогда ВCD=5α, СDE=5β.
Возьмём AC=2R. Тогда BC=2Rsinα, AD=2Rsinβ, BD=2Rsin(α+β).
Воспользуемся теоремой синусов для треугольника BCD:
R/sin(5α)=2Rsin(α+β)/sin(5α).
Упростим:
1/sin(5α)=2sin(α+β)
1/sin(5α)=2sinαcosβ+2cosαsinβ
(sinαcosβ+cosαsinβ)^2=1/4(1-cos^2(5α))
sin^2(α+β)=1/4(1-sin^2(5α))
sin^2(α+β)=1-cos^2(5α)
cos^2(α+β)+sin^2(α+β)=1-cos^2(5α)
Так как BD и CE делятся пополам:
sin(α+β)/sin5β=3/2sin5α
sin(α+β)=3/2cosβ
Тогда sinβ/sin(α+β)=5/3
cosβ=5sin(α+β)/3
(1-cos^2(α+β))(1-sin^2(5α))=5^2/3^2
cos^2(α+β)+cos^2(5α)=1-25/9
5cos^2(5α)=4
R=2/5sin(5α)
Подставим это в AC=2R:
AC=4sin(5α)/5
(СА·СB)(СD·DE)=1
4sin(5α)/5·2R·2Rsin(α+β)(2R·2Rsin(5α))=1
4sin(5α)/5·2/5sin(5α)·2/5sin5α(4/5sin2α)
sinα\sinβ=1/5
sinα=sqrt(5)/5
sinβ=sqrt(5)/5
sin(α+β)=3sqrt(2)/10
cos(α+β)=4/5
cosβ=5sqrt(2)/6
AD=2Rsinβ=4sqrt(5)/3
CD=2Rsin5β=2√5
We also need to find the length of other segments. Let's find angle AJH by finding the angle BHJ first. Since AB = BC, ∠AHB = ∠BJD = 180 - ∠ABC. Hence, ∠FBJ = ∠BJD - ∠FBD = 180 - ∠ABC - ∠FBD.
Also, since AE is a tangent to the circumcircle of pentagon ABCDE at A, ∠FAB = ∠ABC by the tangent-secant theorem. Thus, ∠FBD = 180 - ∠ABC.
Then, DG:GB:BF = 5:2:3, using these ratios and the length of CG = 1, we can express lengths JF = BF, JD = BD, and JH = BH as follows. CG:GB = 1:2. Since GD:GB = 5:2, JD = (5/2) * GB = 5, DG = 5 - 1 = 4; BC = AB, FC = BF. Use the Law of Sines to find AF. As we found the measures of sin(α+β) and cos(α+β) as well from the above calculations. The length of segment AF: AF = FC / sin(∠CFA) = 20/3.
Поскольку АВ=ВС, то угол ABC равен углу ACB, так что произведем замену углов:
АВС=2α, ВСА=2β. Тогда ВCD=5α, СDE=5β.
Возьмём AC=2R. Тогда BC=2Rsinα, AD=2Rsinβ, BD=2Rsin(α+β).
Воспользуемся теоремой синусов для треугольника BCD:
R/sin(5α)=2Rsin(α+β)/sin(5α).
Упростим:
1/sin(5α)=2sin(α+β)
1/sin(5α)=2sinαcosβ+2cosαsinβ
(sinαcosβ+cosαsinβ)^2=1/4(1-cos^2(5α))
sin^2(α+β)=1/4(1-sin^2(5α))
sin^2(α+β)=1-cos^2(5α)
cos^2(α+β)+sin^2(α+β)=1-cos^2(5α)
Так как BD и CE делятся пополам:
sin(α+β)/sin5β=3/2sin5α
sin(α+β)=3/2cosβ
Тогда sinβ/sin(α+β)=5/3
cosβ=5sin(α+β)/3
(1-cos^2(α+β))(1-sin^2(5α))=5^2/3^2
cos^2(α+β)+cos^2(5α)=1-25/9
5cos^2(5α)=4
R=2/5sin(5α)
Подставим это в AC=2R:
AC=4sin(5α)/5
(СА·СB)(СD·DE)=1
4sin(5α)/5·2R·2Rsin(α+β)(2R·2Rsin(5α))=1
4sin(5α)/5·2/5sin(5α)·2/5sin5α(4/5sin2α)
sinα\sinβ=1/5
sinα=sqrt(5)/5
sinβ=sqrt(5)/5
sin(α+β)=3sqrt(2)/10
cos(α+β)=4/5
cosβ=5sqrt(2)/6
AD=2Rsinβ=4sqrt(5)/3
CD=2Rsin5β=2√5
We also need to find the length of other segments. Let's find angle AJH by finding the angle BHJ first. Since AB = BC, ∠AHB = ∠BJD = 180 - ∠ABC. Hence, ∠FBJ = ∠BJD - ∠FBD = 180 - ∠ABC - ∠FBD.
Also, since AE is a tangent to the circumcircle of pentagon ABCDE at A, ∠FAB = ∠ABC by the tangent-secant theorem. Thus, ∠FBD = 180 - ∠ABC.
Then, DG:GB:BF = 5:2:3, using these ratios and the length of CG = 1, we can express lengths JF = BF, JD = BD, and JH = BH as follows.
CG:GB = 1:2. Since GD:GB = 5:2, JD = (5/2) * GB = 5, DG = 5 - 1 = 4; BC = AB, FC = BF.
Use the Law of Sines to find AF. As we found the measures of sin(α+β) and cos(α+β) as well from the above calculations.
The length of segment AF:
AF = FC / sin(∠CFA) = 20/3.