Контрольная по математике 5. Найдите площадь фигуры, ограниченной линиями : у = 4 и у = х^2 + 3

18 Июн 2020 в 19:46
215 +1
0
Ответы
1

Для нахождения площади фигуры ограниченной линиями y = 4 и y = x^2 + 3 необходимо найти точки их пересечения.

Подставим у = 4 в у = x^2 + 3:

4 = x^2 + 3
x^2 = 1
x = ±1

То есть точки пересечения линий: (1, 4) и (-1, 4).

Теперь найдем интеграл от функции y = x^2 + 3 на отрезке [-1, 1]:

∫ [x^2 + 3] dx = (x^3/3 + 3x) ∣ [-1, 1] = ((1/3 + 3) - (-1/3 + 3)) = (10/3 - 8/3) = 2/3

Таким образом, площадь фигуры, ограниченной линиями y = 4 и y = x^2 + 3, равна 2/3.

18 Апр в 10:58
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 648 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир