а) log3(x+1) = 0x + 1 = 3^0x + 1 = 1x = 0
б) log2(x-5) + log2(x+2) = log2(18)log2((x-5)(x+2)) = log2(18)(x-5)(x+2) = 18x^2 - 3x - 10 = 18x^2 - 3x - 28 = 0(x - 7)(x + 4) = 0x = 7, x = -4
в) log3^x - log3x = 2log3^x / 3 = 33^(log3^x) = 3^3x = 3^3x = 27
а) log3(x+1) = 0
x + 1 = 3^0
x + 1 = 1
x = 0
б) log2(x-5) + log2(x+2) = log2(18)
log2((x-5)(x+2)) = log2(18)
(x-5)(x+2) = 18
x^2 - 3x - 10 = 18
x^2 - 3x - 28 = 0
(x - 7)(x + 4) = 0
x = 7, x = -4
в) log3^x - log3x = 2
log3^x / 3 = 3
3^(log3^x) = 3^3
x = 3^3
x = 27