Решите пж задачу по математике Из вершины прямого угла C прямоугольного треугольника ABC проводится перпендикуляр CQ длиной 5 см к плоскости треугольника. Рассчитайте AB, если расстояние от точки Q до гипотонии составляет 13 см, а длина одного катетера - 20 см!
Для начала найдем длину гипотенузы треугольника ABC с помощью теоремы Пифагора:
AB^2 + BC^2 = AC^2
AB^2 + 20^2 = AC^2
AB^2 + 400 = AC^2
Теперь найдем расстояние от точки Q до середины гипотенузы AC:
CQ^2 + QM^2 = CM^2
5^2 + (AC/2)^2 = 13^2
25 + (AC^2)/4 = 169
(AC^2)/4 = 144
AC^2 = 576
Подставляем AC^2 = 576 в уравнение AB^2 + 400 = AC^2:
AB^2 + 400 = 576
AB^2 = 176
AB = √176
AB ≈ 13.3 см
Итак, длина стороны AB равна примерно 13.3 см.