Пусть а - первое число в прогрессии, d - шаг прогрессии.
Тогда числа в прогрессии будут a, a + d, a + 2d, a + 3d.
По условию:a + (a + d) + (a + 2d) = 63a + 3d = 6a + d = 2 (1)
(a + d) + (a + 2d) + (a + 3d) = 93a + 6d = 9a + 2d = 3 (2)
Вычитаем уравнения (1) и (2):
d = 1
Подставляем d = 1 в уравнение (1):
a + 1 = 2a = 1
Таким образом, числа в прогрессии: 1, 2, 3, 4.
Пусть а - первое число в прогрессии, d - шаг прогрессии.
Тогда числа в прогрессии будут a, a + d, a + 2d, a + 3d.
По условию:
a + (a + d) + (a + 2d) = 6
3a + 3d = 6
a + d = 2 (1)
(a + d) + (a + 2d) + (a + 3d) = 9
3a + 6d = 9
a + 2d = 3 (2)
Вычитаем уравнения (1) и (2):
d = 1
Подставляем d = 1 в уравнение (1):
a + 1 = 2
a = 1
Таким образом, числа в прогрессии: 1, 2, 3, 4.