To solve this equation, we need to distribute the 23/40 to the terms inside the parentheses on the left side and simplify both sides of the equation.
(23/40)*(8t+5) - t = 2,6 - (3t - 3/4)
(23/40)(8t) + (23/40)5 - t = 2,6 - 3t + 3/4
(23/5)*t + 23/8 - t = 13/5 - 3t + 3/4
(184/5)*t + 23/8 - t = 13/5 - 3t + 3/4
(184/5 - 1)t + 23/8 = 13/5 - 3t + 3/4
(184/5 - 1)t + 23/8 = 13/5 - (12/4)t + 3/4
(184/5 - 1)t + 23/8 = 13/5 - 15/4
(184/5 - 1)t + 23/8 = 52/10 - 75/20
(184/5 - 1)t + 23/8 = 104/20 - 75/20
(184/5 - 1)t + 23/8 = 29/20
Now, let's solve for t:
(184/5 - 1)t = 29/20 - 23/8
(184/5 - 1)t = 29/20 - 46/20
(184/5 - 1)t = -17/20
Therefore, t = (-17/20) / (184/5 - 1)t = (-17/20) / (184/5 - 1)t = (-17/20) / (184/5 - 1)
t = (17/20) / (1 - 184/5)t = -1
Therefore, the solution to the equation is t = -1.
To solve this equation, we need to distribute the 23/40 to the terms inside the parentheses on the left side and simplify both sides of the equation.
(23/40)*(8t+5) - t = 2,6 - (3t - 3/4)
(23/40)(8t) + (23/40)5 - t = 2,6 - 3t + 3/4
(23/5)*t + 23/8 - t = 13/5 - 3t + 3/4
(184/5)*t + 23/8 - t = 13/5 - 3t + 3/4
(184/5 - 1)t + 23/8 = 13/5 - 3t + 3/4
(184/5 - 1)t + 23/8 = 13/5 - (12/4)t + 3/4
(184/5 - 1)t + 23/8 = 13/5 - 3t + 3/4
(184/5 - 1)t + 23/8 = 13/5 - 15/4
(184/5 - 1)t + 23/8 = 52/10 - 75/20
(184/5 - 1)t + 23/8 = 104/20 - 75/20
(184/5 - 1)t + 23/8 = 29/20
Now, let's solve for t:
(184/5 - 1)t = 29/20 - 23/8
(184/5 - 1)t = 29/20 - 46/20
(184/5 - 1)t = -17/20
Therefore, t = (-17/20) / (184/5 - 1)
t = (-17/20) / (184/5 - 1)
t = (-17/20) / (184/5 - 1)
t = (17/20) / (1 - 184/5)
t = -1
Therefore, the solution to the equation is t = -1.