We can simplify this expression by first factoring out a 3^n from the numerator:
= (2^(2n+1) 3^(n+1)) / (6 12^n)
Next, we can simplify further by writing 12^n as 2^2 * 3^n:
= (2^(2n+1) 3^(n+1)) / (6 2^2 * 3^n)
= (2^(2n+1) 3^(n+1)) / (12 3^n)
= (2^(2n+1) 3^(n+1)) / (3 4 * 3^n)
Therefore, the simplified expression is: (2^(2n+1) 3^(n+1)) / (12 3^n)
We can simplify this expression by first factoring out a 3^n from the numerator:
= (2^(2n+1) 3^(n+1)) / (6 12^n)
Next, we can simplify further by writing 12^n as 2^2 * 3^n:
= (2^(2n+1) 3^(n+1)) / (6 2^2 * 3^n)
= (2^(2n+1) 3^(n+1)) / (12 3^n)
= (2^(2n+1) 3^(n+1)) / (3 4 * 3^n)
= (2^(2n+1) 3^(n+1)) / (12 3^n)
= (2^(2n+1) 3^(n+1)) / (12 3^n)
= (2^(2n+1) 3^(n+1)) / (12 3^n)
= (2^(2n+1) 3^(n+1)) / (12 3^n)
= (2^(2n+1) 3^(n+1)) / (12 3^n)
Therefore, the simplified expression is: (2^(2n+1) 3^(n+1)) / (12 3^n)