Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вчетверо, общий доход семьи вырос бы на 201%. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?
Обозначим за X общий доход семьи до изменений. Пусть зарплата мужа равна M, зарплата жены - W, стипендия дочери - D.
Тогда после увеличения зарплаты мужа вчетверо и уменьшения стипендии дочери вдвое, общий доход семьи будет равен: X + 3M + W - D/2 = 3,01X.
Из условия мы знаем, что: 3M + W + D = X, (1) 3M + W - D = 3,01X. (2)
Выразим X из уравнения (1): X = 3M + W + D.
Подставим этот результат в уравнение (2): 3M + W - D = 3,01(3M + W + D), 3M + W - D = 9,03M + 3,01W + 3,01D.
Перегруппируем члены: 6,03M + 1,99W + 4,01D = 0.
Таким образом, мы получили уравнение, связывающее зарплату мужа, жены и стипендию дочери. Однако, мы не можем точно найти проценты от общего дохода семьи, которые составляет жена без знания конкретных сумм зарплат и стипендии.
Обозначим за X общий доход семьи до изменений.
Пусть зарплата мужа равна M, зарплата жены - W, стипендия дочери - D.
Тогда после увеличения зарплаты мужа вчетверо и уменьшения стипендии дочери вдвое, общий доход семьи будет равен:
X + 3M + W - D/2 = 3,01X.
Из условия мы знаем, что:
3M + W + D = X, (1)
3M + W - D = 3,01X. (2)
Выразим X из уравнения (1):
X = 3M + W + D.
Подставим этот результат в уравнение (2):
3M + W - D = 3,01(3M + W + D),
3M + W - D = 9,03M + 3,01W + 3,01D.
Перегруппируем члены:
6,03M + 1,99W + 4,01D = 0.
Таким образом, мы получили уравнение, связывающее зарплату мужа, жены и стипендию дочери. Однако, мы не можем точно найти проценты от общего дохода семьи, которые составляет жена без знания конкретных сумм зарплат и стипендии.