Даны уравнения двух смежных сторон параллелограмма х+у+5 =0 и х-4у= 0 Найти уравнения двух других сторон если известны точка пересечения его диагоналей K(2;-2)

15 Апр 2021 в 19:53
60 +1
1
Ответы
1

Для начала найдем точку пересечения диагоналей параллелограмма. Поскольку диагонали параллельны, то точка пересечения диагоналей делит диагонали пополам.

Уравнение прямой, проходящей через точку K(2;-2) и точку пересечения диагоналей D(x, y) имеет вид:

y - (-2) = (-2 - (-2)) / (x - 2)

y + 2 = 0 / (x - 2)

y + 2 = 0

y = -2

Таким образом, точка пересечения диагоналей D(x, y) имеет координаты (x, -2). Поскольку она является серединой диагонали параллелограмма и точки пересечения диагоналей делят диагональ пополам, то можно найти координаты другой точки диагонали E(x', y):

x' = 2 * x - 2
y = -4

Теперь найдем уравнения двух других сторон параллелограмма, проходящих через точки K(2;-2) и E(x', -4).

Уравнение прямой, проходящей через точки K и E:

y - (-2) = (-4 - (-2)) / (x - 2)

y + 2 = -2 / (x - 2)

y + 2 = -2 / (x - 2)

y + 2 = -2(x - 2)

y + 2 = -2x + 4

2x + y - 2 = 0

Полученное уравнение является уравнением одной из сторон параллелограмма. Найдем уравнение второй стороны.

Так как противоположные стороны параллелограмма параллельны, то уравнение второй стороны должно иметь вид:

2x + y + C = 0

C - константа, которую нам нужно найти.

Подставим координаты точки K(2;-2) в это уравнение:

2 * 2 + (-2) + C = 0

4 - 2 + C = 0

2 + C = 0

C = -2

Таким образом, уравнение второй стороны будет:

2x + y - 2 = 0

2x + y - 2 = 0

Полученные уравнения двух других сторон параллелограмма:

2x + y - 2 = 02x + y - 2 = 0

Таким образом, уравнения двух других сторон параллелограмма найдены.

17 Апр в 19:03
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 436 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир