22 Апр 2021 в 19:51
48 +1
0
Ответы
1

To solve the inequality x^2 - 4x + 1/(x - 3) < 2, we first need to rewrite it in a standard form:

x^2 - 4x + 1 < 2(x - 3)
x^2 - 4x + 1 < 2x - 6
x^2 - 6x + 7 < 0

Now we need to find the values of x that satisfy this inequality. To do that, we can factor the quadratic equation:

(x - 1)(x - 7) < 0

The solutions to this inequality are x < 1 and x > 7. Therefore, the values of x that satisfy x^2 - 4x + 1/(x - 3) < 2 are x < 1 and x > 7.

17 Апр в 18:47
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 436 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир