16 Мая 2021 в 19:47
36 +1
0
Ответы
1

Для начала преобразуем уравнение:

4cos^2x - 3sinx = 3
4cos^2x = 3sinx + 3

Используем тригонометрические тождества:
cos^2x = 1 - sin^2x

Подставляем это в уравнение:
4(1 - sin^2x) = 3sinx + 3
4 - 4sin^2x = 3sinx + 3
4sin^2x + 3sinx + 1 = 0

Получили квадратное уравнение. Решим его:
Для удобства введем замену: t = sinx

4t^2 + 3t + 1 = 0

D = 3^2 - 441 = 9 - 16 = -7
D < 0, значит, у уравнения нет действительных корней.

Таким образом, уравнение 4cos^2x - 3sinx = 3 не имеет решений.

17 Апр в 18:31
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 076 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир