To simplify the expression (cos 8x)/(sin 8x - tan 4x), we can use trigonometric identities and formulas:
cos 8x = 2cos^2(4x) - 1sin 8x = 2sin(4x)cos(4x)tan 4x = sin(4x)/cos(4x)
Substitute these identities into the expression:
(cos 8x)/(sin 8x - tan 4x)= (2cos^2(4x) - 1) / (2sin(4x)cos(4x) - sin(4x)/cos(4x))= (2cos^2(4x) - 1) / (sin(4x)(2cos(4x) - 1/cos(4x)))= (2cos^2(4x) - 1) / (sin(4x)(2cos(4x)^2 - 1))= (2cos^2(4x) - 1) / (sin(4x)(2 - sin(4x)^2))
Now we can simplify further by using trigonometric identities:
cos^2(4x) = (1 + cos(8x))/2sin^2(4x) = (1 - cos(8x))/2
Plug these identities into the expression:
= [2(1 + cos(8x))/2 - 1] / [sin(4x)(2 - (1 - cos(8x))/2)]= (1 + cos(8x) - 1) / [2sin(4x) - sin(4x - cos(8x)/2)]= cos(8x) / [2sin(4x) - sin(4x - cos(8x)/2)]
Therefore, the simplified expression is cos(8x) / [2sin(4x) - sin(4x - cos(8x)/2)].
To simplify the expression (cos 8x)/(sin 8x - tan 4x), we can use trigonometric identities and formulas:
cos 8x = 2cos^2(4x) - 1
sin 8x = 2sin(4x)cos(4x)
tan 4x = sin(4x)/cos(4x)
Substitute these identities into the expression:
(cos 8x)/(sin 8x - tan 4x)
= (2cos^2(4x) - 1) / (2sin(4x)cos(4x) - sin(4x)/cos(4x))
= (2cos^2(4x) - 1) / (sin(4x)(2cos(4x) - 1/cos(4x)))
= (2cos^2(4x) - 1) / (sin(4x)(2cos(4x)^2 - 1))
= (2cos^2(4x) - 1) / (sin(4x)(2 - sin(4x)^2))
Now we can simplify further by using trigonometric identities:
cos^2(4x) = (1 + cos(8x))/2
sin^2(4x) = (1 - cos(8x))/2
Plug these identities into the expression:
= [2(1 + cos(8x))/2 - 1] / [sin(4x)(2 - (1 - cos(8x))/2)]
= (1 + cos(8x) - 1) / [2sin(4x) - sin(4x - cos(8x)/2)]
= cos(8x) / [2sin(4x) - sin(4x - cos(8x)/2)]
Therefore, the simplified expression is cos(8x) / [2sin(4x) - sin(4x - cos(8x)/2)].