Выберите и решите одно : (с объяснениями) 16. Графику функции y=2x^2+bx+3 принадлежит точка A(-1;6). Найдите b. 17. Решите систему уравнений x^2+3xy+y^2=11 2x+y=3
Точка A(-1;6) принадлежит графику функции y=2x^2+bx+3, значит, если подставить координаты точки A в уравнение функции, мы должны получить верное равенство. То есть: 6 = 2(-1)^2 + b*(-1) + 3 6 = 2 - b + 3 6 = 5 - b b = 5 - 6 b = -1
Ответ: b = -1
Мы имеем систему уравнений: 1) x^2 + 3xy + y^2 = 11 2) 2x + y = 3
Точка A(-1;6) принадлежит графику функции y=2x^2+bx+3, значит, если подставить координаты точки A в уравнение функции, мы должны получить верное равенство. То есть:
6 = 2(-1)^2 + b*(-1) + 3
6 = 2 - b + 3
6 = 5 - b
b = 5 - 6
b = -1
Ответ: b = -1
Мы имеем систему уравнений:
1) x^2 + 3xy + y^2 = 11
2) 2x + y = 3
Подставим второе уравнение в первое, чтобы выразить только одну переменную:
x^2 + 3x(3-2x) + (3-2x)^2 = 11
x^2 + 9x - 6x^2 + 9 - 12x + 4x^2 = 11
-3x^2 + 9x - 12x + 9 = 11
-3x^2 - 3x - 2 = 0
3x^2 + 3x + 2 = 0
Решив данное квадратное уравнение, мы найдем значения x, которые затем подставим в уравнение 2 для нахождения соответствующих y.
Ответ: решением системы уравнений является x = -1, y = 5.