Expanding the expression, we get:
(3sin(a) + 2cos(a))^2 + (2sin(a) - 3cos(a))^2= (3sin(a) + 2cos(a))(3sin(a) + 2cos(a)) + (2sin(a) - 3cos(a))(2sin(a) - 3cos(a))= 9sin^2(a) + 12sin(a)cos(a) + 4cos^2(a) + 4sin^2(a) - 12sin(a)cos(a) + 9cos^2(a)= 13sin^2(a) + 13cos^2(a)= 13(sin^2(a) + cos^2(a))= 13(1)= 13
Therefore, (3sin(a) + 2cos(a))^2 + (2sin(a) - 3cos(a))^2 = 13.
Expanding the expression, we get:
(3sin(a) + 2cos(a))^2 + (2sin(a) - 3cos(a))^2
= (3sin(a) + 2cos(a))(3sin(a) + 2cos(a)) + (2sin(a) - 3cos(a))(2sin(a) - 3cos(a))
= 9sin^2(a) + 12sin(a)cos(a) + 4cos^2(a) + 4sin^2(a) - 12sin(a)cos(a) + 9cos^2(a)
= 13sin^2(a) + 13cos^2(a)
= 13(sin^2(a) + cos^2(a))
= 13(1)
= 13
Therefore, (3sin(a) + 2cos(a))^2 + (2sin(a) - 3cos(a))^2 = 13.