За учебники и словари заплатили 46700 руб. Сколько рублей стоили учебники ,если за словари заплатили одну сотую часть этих денег? Вторая задача В первый день собрали 80 кг винограда,что в 2 раза больше ,чем во второй. Из всего винограда сделали изюм. Сколько килограммов изюма получилось,если его масса составляет одну четвертую часть мыссы всего винограда?
Пусть х - стоимость учебников. Тогда словари стоили 46700 - х рублей. Так как за словари заплатили одну сотую часть денег, то есть 46700 - х = 46700/100. Уравнение: x + 46700 - х = 46700/100 Решаем уравнение: x = 46700/2 = 23350 рублей Ответ: учебники стоили 23350 рублей.
Пусть х - масса винограда во второй день. Тогда в первый день было 2х кг винограда. Всего винограда было х + 2х = 3х кг. Масса изюма составляет 1/4 от массы винограда, то есть (1/4)*3х = 3х/4 кг изюма. Ответ: изюм получилось 3х/4 кг.
Пусть х - стоимость учебников. Тогда словари стоили 46700 - х рублей.
Так как за словари заплатили одну сотую часть денег, то есть 46700 - х = 46700/100.
Уравнение: x + 46700 - х = 46700/100
Решаем уравнение: x = 46700/2 = 23350 рублей
Ответ: учебники стоили 23350 рублей.
Пусть х - масса винограда во второй день. Тогда в первый день было 2х кг винограда.
Всего винограда было х + 2х = 3х кг.
Масса изюма составляет 1/4 от массы винограда, то есть (1/4)*3х = 3х/4 кг изюма.
Ответ: изюм получилось 3х/4 кг.