First, let's expand and simplify the given equation:
2(x^2 - x + 1)^2 - 9(2x^2 - x + 2) + 23 = 0
Expanding (x^2 - x + 1)^2:=x^4 - 2x^3 + 2x^2 - 2x^3 + 4x^2 - 4x + 2x^2 - 4x + 1
= x^4 - 4x^3 + 8x^2 - 8x + 1
Now, substitute the expanded form into the equation:
2(x^4 - 4x^3 + 8x^2 - 8x + 1) - 9(2x^2 - x + 2) + 23 = 0
Expand further:
2x^4 - 8x^3 + 16x^2 - 16x + 2 - 18x^2 + 9x - 18 + 23 = 0
Combine like terms:
2x^4 - 8x^3 - 2x^2 - 7x + 7 = 0
This is the simplified form of the equation.
First, let's expand and simplify the given equation:
2(x^2 - x + 1)^2 - 9(2x^2 - x + 2) + 23 = 0
Expanding (x^2 - x + 1)^2:
=x^4 - 2x^3 + 2x^2 - 2x^3 + 4x^2 - 4x + 2x^2 - 4x + 1
= x^4 - 4x^3 + 8x^2 - 8x + 1
Now, substitute the expanded form into the equation:
2(x^4 - 4x^3 + 8x^2 - 8x + 1) - 9(2x^2 - x + 2) + 23 = 0
Expand further:
2x^4 - 8x^3 + 16x^2 - 16x + 2 - 18x^2 + 9x - 18 + 23 = 0
Combine like terms:
2x^4 - 8x^3 - 2x^2 - 7x + 7 = 0
This is the simplified form of the equation.