a) cos 210° = cos (180° + 30°) = -cos 30° = -√3 / 2
b) th(-п/4) = tan(-π/4) = -tan(π/4) = -1
a) sin(2π+a) - cos(π/2+a) = sin(2π)cos(a) + cos(2π)sin(a) - sin(π/2)cos(a) - cos(π/2)sin(a)= 0cos(a) + 1sin(a) - 1cos(a) - 0sin(a)= sin(a) - cos(a)
b) cos(a-B) - cos(a)cos(B) = cos(a)cos(B) + sin(a)sin(B) - cos(a)cos(B)= sin(a)sin(B)
c) sin(2a)th(a) = sin(2a) sinh(a) = 2sin(a)cos(a)sinh(a) = 2sin(a)cosh(a)
a) cos 210° = cos (180° + 30°) = -cos 30° = -√3 / 2
b) th(-п/4) = tan(-π/4) = -tan(π/4) = -1
a) sin(2π+a) - cos(π/2+a) = sin(2π)cos(a) + cos(2π)sin(a) - sin(π/2)cos(a) - cos(π/2)sin(a)
= 0cos(a) + 1sin(a) - 1cos(a) - 0sin(a)
= sin(a) - cos(a)
b) cos(a-B) - cos(a)cos(B) = cos(a)cos(B) + sin(a)sin(B) - cos(a)cos(B)
= sin(a)sin(B)
c) sin(2a)th(a) = sin(2a) sinh(a) = 2sin(a)cos(a)sinh(a) = 2sin(a)cosh(a)