Для начала выразим sin(a-b) и sin(a+b) через tg a и tg b:
sin(a-b) = sin(a)cos(b) - cos(a)sin(b) = (sin(a)/cos(a))(cos(b)/cos(b)) - (cos(a)/cos(a))(sin(b)/cos(b)) = tgactgb - cgatgbsin(a+b) = sin(a)cos(b) + cos(a)sin(b) = (sin(a)/cos(a))(cos(b)/cos(b)) + (cos(a)/cos(a))(sin(b)/cos(b)) = tgactgb + cgatgb
Теперь можем выразить отношения:
a) sin(a-b)/sin(a+b) = (tgactgb - cgatgb)/(tgactgb + cgatgb) = (tga - tgb)/(tga + tgb)
Теперь выразим cos(a-b) и cos(a+b) через ctg a и ctg b:
cos(a-b) = cos(a)cos(b) + sin(a)sin(b) = (cos(a)/sin(a))(cos(b)/sin(b)) + (sin(a)/sin(a))(sin(b)/sin(b)) = cgactgb + tgatgbcos(a+b) = cos(a)cos(b) - sin(a)sin(b) = (cos(a)/sin(a))(cos(b)/sin(b)) - (sin(a)/sin(a))(sin(b)/sin(b)) = cgactgb - tgatgb
b) cos(a-b)/cos(a+b) = (cgactgb + tgatgb)/(cgactgb - tgatgb) = (ctga + ctgb)/(ctga - ctgb)
Для начала выразим sin(a-b) и sin(a+b) через tg a и tg b:
sin(a-b) = sin(a)cos(b) - cos(a)sin(b) = (sin(a)/cos(a))(cos(b)/cos(b)) - (cos(a)/cos(a))(sin(b)/cos(b)) = tgactgb - cgatgb
sin(a+b) = sin(a)cos(b) + cos(a)sin(b) = (sin(a)/cos(a))(cos(b)/cos(b)) + (cos(a)/cos(a))(sin(b)/cos(b)) = tgactgb + cgatgb
Теперь можем выразить отношения:
a) sin(a-b)/sin(a+b) = (tgactgb - cgatgb)/(tgactgb + cgatgb) = (tga - tgb)/(tga + tgb)
Теперь выразим cos(a-b) и cos(a+b) через ctg a и ctg b:
cos(a-b) = cos(a)cos(b) + sin(a)sin(b) = (cos(a)/sin(a))(cos(b)/sin(b)) + (sin(a)/sin(a))(sin(b)/sin(b)) = cgactgb + tgatgb
cos(a+b) = cos(a)cos(b) - sin(a)sin(b) = (cos(a)/sin(a))(cos(b)/sin(b)) - (sin(a)/sin(a))(sin(b)/sin(b)) = cgactgb - tgatgb
b) cos(a-b)/cos(a+b) = (cgactgb + tgatgb)/(cgactgb - tgatgb) = (ctga + ctgb)/(ctga - ctgb)