1) sin(pi/3 - x) = 1/2sin(pi/3)cos(x) - cos(pi/3)sin(x) = 1/2(√3/2)cos(x) - (1/2)sin(x) = 1/2√3cos(x) - sin(x) = 1
По формуле тригонометрической замены:sin(x) = √(1 - cos²(x))
√3cos(x) - √(1 - cos²(x)) = 13cos²(x) - 1 - 1 + cos²(x) = 14cos²(x) = 2cos(x) = ±√2/2cos(x) = ±1/√2x1 = pi/4 + 2pin, x2 = 7pi/4 + 2pin
2) 3tg^2(x) = -√3tg^2(x) = -√3/3tg(x) = ±√(-√3/3)tg(x) = ±i√(√3/3)x1 = pi/3 + pin, x2 = 2pi/3 + pin, x3 = 4pi/3 + pin, x4 = 5pi/3 + pin
1) sin(pi/3 - x) = 1/2
sin(pi/3)cos(x) - cos(pi/3)sin(x) = 1/2
(√3/2)cos(x) - (1/2)sin(x) = 1/2
√3cos(x) - sin(x) = 1
По формуле тригонометрической замены:
sin(x) = √(1 - cos²(x))
√3cos(x) - √(1 - cos²(x)) = 1
3cos²(x) - 1 - 1 + cos²(x) = 1
4cos²(x) = 2
cos(x) = ±√2/2
cos(x) = ±1/√2
x1 = pi/4 + 2pin, x2 = 7pi/4 + 2pin
2) 3tg^2(x) = -√3
tg^2(x) = -√3/3
tg(x) = ±√(-√3/3)
tg(x) = ±i√(√3/3)
x1 = pi/3 + pin, x2 = 2pi/3 + pin, x3 = 4pi/3 + pin, x4 = 5pi/3 + pin