1) Длина вектора AB:AB = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2) = √((3 - (-2))^2 + (1 - (-1))^2 + (-4 - (-1))^2) = √(5^2 + 2^2 + (-3)^2) = √(25 + 4 + 9) = √38
2) Скалярное произведение (AB, AC):AB = (3 -(-2), 1 -(-1), -4 -(-1)) = (5, 2, -3)AC = (-5 -(-2), 2 -(-1), -8 -(-1)) = (-3, 3, -7)(AB, AC) = 5(-3) + 23 + (-3)*(-7) = -15 + 6 + 21 = 12
3) Векторное произведение [AB, AC]:i j k5 2 -3-3 3 -7
i = 2(-7) - 33 = -14 - 9 = -23j = 5(-7) - (-3)(-3) = -35 - 9 = -44k = 53 - 2(-3) = 15 + 6 = 21
[AB, AC] = (-23, -44, 21)
1) Длина вектора AB:
AB = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2) = √((3 - (-2))^2 + (1 - (-1))^2 + (-4 - (-1))^2) = √(5^2 + 2^2 + (-3)^2) = √(25 + 4 + 9) = √38
2) Скалярное произведение (AB, AC):
AB = (3 -(-2), 1 -(-1), -4 -(-1)) = (5, 2, -3)
AC = (-5 -(-2), 2 -(-1), -8 -(-1)) = (-3, 3, -7)
(AB, AC) = 5(-3) + 23 + (-3)*(-7) = -15 + 6 + 21 = 12
3) Векторное произведение [AB, AC]:
i j k
5 2 -3
-3 3 -7
i = 2(-7) - 33 = -14 - 9 = -23
j = 5(-7) - (-3)(-3) = -35 - 9 = -44
k = 53 - 2(-3) = 15 + 6 = 21
[AB, AC] = (-23, -44, 21)