5 Авг 2021 в 19:42
28 +2
0
Ответы
1

Для нахождения производной данной функции, воспользуемся правилом дифференцирования сложной функции.

Имеем функцию f(x) = (x^2 - 16) / (8x^2).

Разделим числитель и знаменатель на 8:

f(x) = (1/8) * (x^2 - 16) / x^2.

Теперь разобьем функцию на две части:

f(x) = (1/8) * (1 - 16/x^2).

Теперь найдем производную функции по правилам дифференцирования:

f'(x) = (1/8) [0 - (-2)16/x^3] = (1/4) * (16/x^3) = 4/x^3.

Итак, производная функции f(x) = (x^2 - 16) / (8x^2) равна f'(x) = 4/x^3.

17 Апр в 13:40
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 91 734 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир