Let's solve the given equation step by step:
12 - (1 - 6x)x = 3x(2x(2x - 1) + 2x)
First, distribute the x term inside the parentheses on the left side:12 - x + 6x^2 = 3x(2x(2x - 1) + 2x)
Next, simplify the expression inside the parentheses on the right side:12 - x + 6x^2 = 3x(4x^2 - 2x + 2x)
Combine like terms on the right side:12 - x + 6x^2 = 3x(4x^2)
Now distribute 3x on the right side:12 - x + 6x^2 = 12x^3
Rearrange the terms to set the equation to zero:12x^3 - 6x^2 - x + 12 = 0
This is the simplified form of the given equation.
Let's solve the given equation step by step:
12 - (1 - 6x)x = 3x(2x(2x - 1) + 2x)
First, distribute the x term inside the parentheses on the left side:
12 - x + 6x^2 = 3x(2x(2x - 1) + 2x)
Next, simplify the expression inside the parentheses on the right side:
12 - x + 6x^2 = 3x(4x^2 - 2x + 2x)
Combine like terms on the right side:
12 - x + 6x^2 = 3x(4x^2)
Now distribute 3x on the right side:
12 - x + 6x^2 = 12x^3
Rearrange the terms to set the equation to zero:
12x^3 - 6x^2 - x + 12 = 0
This is the simplified form of the given equation.