To find the values of 0,2 cos x, sin x, and tan x, we first need to find the value of x from the equation cos 2x = 0.
Using the double angle formula for cosine, cos 2x = 1 - 2sin^2 x
Therefore, 1 - 2sin^2 x = 02sin^2 x = 1sin^2 x = 1/2sin x = ± √(1/2) = ± 1/√2 = ± √2 / 2
Now, we can find the values of 0,2 cos x, sin x, and tan x:
0,2 cos x = 0,2 cos x= 0,2 ± √(1 - sin^2 x)= 0,2 ± √(1 - 1/2)= 0,2 ± √(1/2)= ± 0,2 / √2= ± 0,2√2 / 2= ± 0,1√2
sin x = ± √2 / 2
tan x = sin x / cos x= ± (√2 / 2) / (± 0,1√2)= ± 1 / 0,1= ± 10
Therefore, 0,2 cos x = ± 0,1√2, sin x = ± √2 / 2, and tan x = ± 10.
To find the values of 0,2 cos x, sin x, and tan x, we first need to find the value of x from the equation cos 2x = 0.
Using the double angle formula for cosine, cos 2x = 1 - 2sin^2 x
Therefore, 1 - 2sin^2 x = 0
2sin^2 x = 1
sin^2 x = 1/2
sin x = ± √(1/2) = ± 1/√2 = ± √2 / 2
Now, we can find the values of 0,2 cos x, sin x, and tan x:
0,2 cos x = 0,2 cos x
= 0,2 ± √(1 - sin^2 x)
= 0,2 ± √(1 - 1/2)
= 0,2 ± √(1/2)
= ± 0,2 / √2
= ± 0,2√2 / 2
= ± 0,1√2
sin x = ± √2 / 2
tan x = sin x / cos x
= ± (√2 / 2) / (± 0,1√2)
= ± 1 / 0,1
= ± 10
Therefore, 0,2 cos x = ± 0,1√2, sin x = ± √2 / 2, and tan x = ± 10.