Обозначим третье число за (x). Тогда первое число равно (2.5x), а второе число равно (0.67x) (так как оно в 1.5 раза меньше третьего).
Теперь можем записать уравнение для среднего арифметического:[\frac{2.5x + 0.67x + x}{3} = 28][\frac{4.17x}{3} = 28][4.17x = 84][x \approx 20]
Итак, третье число равно 20, первое число равно (2.5 \times 20 = 50), а второе число равно (0.67 \times 20 = 13.4).
Обозначим третье число за (x). Тогда первое число равно (2.5x), а второе число равно (0.67x) (так как оно в 1.5 раза меньше третьего).
Теперь можем записать уравнение для среднего арифметического:
[\frac{2.5x + 0.67x + x}{3} = 28]
[\frac{4.17x}{3} = 28]
[4.17x = 84]
[x \approx 20]
Итак, третье число равно 20, первое число равно (2.5 \times 20 = 50), а второе число равно (0.67 \times 20 = 13.4).