Для начала найдем значение угла A в радианах, так как sin A = 2/√13, то sin A = противолежащий катет / гипотенуза = AB / AC. Так как AB = 2√13 и AC = х, то sin A = 2√13 / х. Так как sin A = 2/√13, то 2√13 / х = 2 / √13. Упростим уравнение: 2√13 √13 / х = 2. 26 / х = 2. Х = 13. Применим теорему Пифагора: AC^2 = AB^2 + BC^2, 13^2 = 2^2 + BC^2, 169 = 4 + BC^2, BC^2 = 165. Теперь найдем площадь треугольника: S = 1/2 AB BC = 1/2 2√13 √165 = √26 √165 = √4290.
Для начала найдем значение угла A в радианах, так как sin A = 2/√13, то sin A = противолежащий катет / гипотенуза = AB / AC. Так как AB = 2√13 и AC = х, то sin A = 2√13 / х.
Так как sin A = 2/√13, то 2√13 / х = 2 / √13. Упростим уравнение: 2√13 √13 / х = 2. 26 / х = 2. Х = 13.
Применим теорему Пифагора: AC^2 = AB^2 + BC^2, 13^2 = 2^2 + BC^2, 169 = 4 + BC^2, BC^2 = 165.
Теперь найдем площадь треугольника: S = 1/2 AB BC = 1/2 2√13 √165 = √26 √165 = √4290.
Площадь треугольника ABC равна √4290.