Из сосуда с вином отлили 1 л вина и добавили 1 л воды. Затем отлили 1 л смеси и добавили 1 л воды и т.д. После того, как эта операция была проведена 35 раз, оказалось, что смесь в сосуде состоит наполовину из воды и наполовину из вина. Сколько вина было первоначально в сосуде?
После первой операции в сосуде осталось (x - 1) л вина и 1 л воды. После второй операции в сосуде осталось ((x-1)/2) л вина и 1 л воды. ... После 35 операции в сосуде осталось ((x-1)/2^{35}) л вина и 1 л воды.
Из условия задачи следует, что ((x-1)/2^{35} = (x-1)/2).
Решая это уравнение, получаем x = 1 + 2^{35} л вина.
Пусть исходно в сосуде было x л вина.
После первой операции в сосуде осталось (x - 1) л вина и 1 л воды.
После второй операции в сосуде осталось ((x-1)/2) л вина и 1 л воды.
...
После 35 операции в сосуде осталось ((x-1)/2^{35}) л вина и 1 л воды.
Из условия задачи следует, что ((x-1)/2^{35} = (x-1)/2).
Решая это уравнение, получаем x = 1 + 2^{35} л вина.
Итак, в начале в сосуде было (1 + 2^{35}) л вина.