Expanding the given expression, we get:
2xy(4x - y) * (2x + y)^2
Expanding (2x + y)^2, we get:
(2x + y)^2 = (2x + y)(2x + y)= 4x^2 + 2xy + 2xy + y^2= 4x^2 + 4xy + y^2
Therefore, the overall expression becomes:
2xy(4x - y) (4x^2 + 4xy + y^2)= 8x^2y - 2xy^2 (4x^2 + 4xy + y^2)= 32x^3y + 32x^2y^2 - 8x^2y^2 - 8xy^3= 32x^3y + 24x^2y^2 - 8xy^3
Expanding the given expression, we get:
2xy(4x - y) * (2x + y)^2
Expanding (2x + y)^2, we get:
(2x + y)^2 = (2x + y)(2x + y)
= 4x^2 + 2xy + 2xy + y^2
= 4x^2 + 4xy + y^2
Therefore, the overall expression becomes:
2xy(4x - y) (4x^2 + 4xy + y^2)
= 8x^2y - 2xy^2 (4x^2 + 4xy + y^2)
= 32x^3y + 32x^2y^2 - 8x^2y^2 - 8xy^3
= 32x^3y + 24x^2y^2 - 8xy^3