1) √(2x + 37) = x + 1
2x + 37 = (x + 1)^22x + 37 = x^2 + 2x + 10 = x^2 - 36x^2 = 36x = ±6
2) 5sin(π + a) + cos(π/2 + a)
sin(π + a) = sin(π)cos(a) + cos(π)sin(a) = 0cos(a) - 1sin(a) = -sin(a)cos(π/2 + a) = cos(π/2)cos(a) - sin(π/2)sin(a) = 0cos(a) - 1sin(a) = -sin(a)
Therefore, 5sin(π + a) + cos(π/2 + a) = 5(-sin(a)) + (-sin(a)) = -6sin(a)
Given sin(a) = 0.5, then -6sin(a) = -6(0.5) = -3
3) 8sin^2(x) - 6sin(x) + 5
This is a quadratic equation in sin(x). Let sin(x) = y:
8y^2 - 6y + 5
Discriminant = b^2 - 4ac = (-6)^2 - 4(8)(5) = 36 - 160 = -124
Since the discriminant is negative, the equation has no real solutions.
4) T(t) = T* + at + bt^2
Substitute the given values:T(t) = 360 + 34t - 0.2t^2
1) √(2x + 37) = x + 1
2x + 37 = (x + 1)^2
2x + 37 = x^2 + 2x + 1
0 = x^2 - 36
x^2 = 36
x = ±6
2) 5sin(π + a) + cos(π/2 + a)
sin(π + a) = sin(π)cos(a) + cos(π)sin(a) = 0cos(a) - 1sin(a) = -sin(a)
cos(π/2 + a) = cos(π/2)cos(a) - sin(π/2)sin(a) = 0cos(a) - 1sin(a) = -sin(a)
Therefore, 5sin(π + a) + cos(π/2 + a) = 5(-sin(a)) + (-sin(a)) = -6sin(a)
Given sin(a) = 0.5, then -6sin(a) = -6(0.5) = -3
3) 8sin^2(x) - 6sin(x) + 5
This is a quadratic equation in sin(x). Let sin(x) = y:
8y^2 - 6y + 5
Discriminant = b^2 - 4ac = (-6)^2 - 4(8)(5) = 36 - 160 = -124
Since the discriminant is negative, the equation has no real solutions.
4) T(t) = T* + at + bt^2
Substitute the given values:
T(t) = 360 + 34t - 0.2t^2