Шестизначное число А делится на 13 а число полученное вычёркиванием его последней цифры делится на 17 .найти наименьшее А,удовлетворяющее этим требованиям А)100139 Б)631456 В)536111 Г)нет верного
A) 100139 -> 10013 (100139 без последней цифры) -> не делится на 17 Б) 631456 -> 63145 (631456 без последней цифры) -> 63145 делится на 17 (3715) В) 536111 -> 53611 (536111 без последней цифры) -> 53611 не делится на 17
Следовательно, наименьшее число, удовлетворяющее условиям задачи, это 631456 (вариант Б).
Давайте проверим каждый вариант:
A) 100139 -> 10013 (100139 без последней цифры) -> не делится на 17
Б) 631456 -> 63145 (631456 без последней цифры) -> 63145 делится на 17 (3715)
В) 536111 -> 53611 (536111 без последней цифры) -> 53611 не делится на 17
Следовательно, наименьшее число, удовлетворяющее условиям задачи, это 631456 (вариант Б).