To simplify the expression Y = sin(x)sin(4x) - cos(x)cos(4x), we can use the angle difference formula for cosine:
cos(a-b) = cos(a)cos(b) + sin(a)sin(b)
Applying this formula, we have:
Y = sin(x)sin(4x) - cos(x)cos(4x)Y = sin(x)sin(4x) - cos(x)cos(4x)
Rewriting sin(4x) and cos(4x) using the angle sum formula:
sin(4x) = 2sin(2x)cos(2x)cos(4x) = 2cos^2(2x) - 1
Now, substitute these expressions into the equation:
Y = sin(x) 2sin(2x)cos(2x) - cos(x) (2cos^2(2x) - 1)
Expand the terms:
Y = 2sin(x)sin(2x)cos(2x) - 2cos(x)cos^2(2x) + cos(x)
Using trigonometric identities:
sin(2x) = 2sin(x)cos(x)cos^2(2x) = 1 - 2sin^2(2x)
Substitute these identities into the equation:
Y = 2sin(x) * 2sin(x)cos(x)cos(2x) - 2cos(x)(1 - 2sin^2(2x)) + cos(x)
Simplify the terms further:
Y = 4sin^2(x)cos(x)cos(2x) - 2cos(x) + 4sin^2(2x)cos(x) - cos(x)
Y = 4sin^2(x)cos(x)cos(2x) + 4sin^2(2x)cos(x) - 3cos(x)
Therefore, the simplified expression for Y = sin(x)sin(4x) - cos(x)cos(4x) is:
4sin^2(x)cos(x)cos(2x) + 4sin^2(2x)cos(x) - 3cos(x)
To simplify the expression Y = sin(x)sin(4x) - cos(x)cos(4x), we can use the angle difference formula for cosine:
cos(a-b) = cos(a)cos(b) + sin(a)sin(b)
Applying this formula, we have:
Y = sin(x)sin(4x) - cos(x)cos(4x)
Y = sin(x)sin(4x) - cos(x)cos(4x)
Rewriting sin(4x) and cos(4x) using the angle sum formula:
sin(4x) = 2sin(2x)cos(2x)
cos(4x) = 2cos^2(2x) - 1
Now, substitute these expressions into the equation:
Y = sin(x) 2sin(2x)cos(2x) - cos(x) (2cos^2(2x) - 1)
Expand the terms:
Y = 2sin(x)sin(2x)cos(2x) - 2cos(x)cos^2(2x) + cos(x)
Using trigonometric identities:
sin(2x) = 2sin(x)cos(x)
cos^2(2x) = 1 - 2sin^2(2x)
Substitute these identities into the equation:
Y = 2sin(x) * 2sin(x)cos(x)cos(2x) - 2cos(x)(1 - 2sin^2(2x)) + cos(x)
Simplify the terms further:
Y = 4sin^2(x)cos(x)cos(2x) - 2cos(x) + 4sin^2(2x)cos(x) - cos(x)
Y = 4sin^2(x)cos(x)cos(2x) + 4sin^2(2x)cos(x) - 3cos(x)
Therefore, the simplified expression for Y = sin(x)sin(4x) - cos(x)cos(4x) is:
4sin^2(x)cos(x)cos(2x) + 4sin^2(2x)cos(x) - 3cos(x)