Для решения данного уравнения сначала выразим 0,25 в виде степени числа 4: 0,25 = 4^(-2).
Теперь уравнение примет вид: 4^x - 4^(-2x) - 2 = 15.
Так как 4^(-2x) = (4^x)^(-2) = (2^2)^(-2) = 1/4^2 = 1/16, то уравнение можно переписать так: 4^x - 1/16 - 2 = 15.
Преобразуем уравнение: 4^x - 1/16 = 17.
4^x = 17 + 1/16 = 273/16.
Теперь найдем значение x, взяв логарифм от обеих сторон уравнения:
x = log(273/16, 4).
Полученное уравнение может быть решено с помощью калькулятора или программы для вычисления логарифмов.
Для решения данного уравнения сначала выразим 0,25 в виде степени числа 4: 0,25 = 4^(-2).
Теперь уравнение примет вид: 4^x - 4^(-2x) - 2 = 15.
Так как 4^(-2x) = (4^x)^(-2) = (2^2)^(-2) = 1/4^2 = 1/16, то уравнение можно переписать так: 4^x - 1/16 - 2 = 15.
Преобразуем уравнение: 4^x - 1/16 = 17.
4^x = 17 + 1/16 = 273/16.
Теперь найдем значение x, взяв логарифм от обеих сторон уравнения:
x = log(273/16, 4).
Полученное уравнение может быть решено с помощью калькулятора или программы для вычисления логарифмов.