Пусть общая площадь всей земли в совхозе равна Х га.
Тогда площадь лугов составляет (4/9)X га, а площадь посевов составляет (1/3)X га.
Учитывая условие задачи, получаем уравнения:
(4/9)X + (1/3)X = 630
Упрощаем:
(4/9 + 1/3)X = 630(4/9 + 3/9)X = 630(7/9)X = 630
Умножаем на 9:
7X = 5670
Делим на 7:
X = 810
Итак, общая площадь всей земли в совхозе составляет 810 га.
Пусть общая площадь всей земли в совхозе равна Х га.
Тогда площадь лугов составляет (4/9)X га, а площадь посевов составляет (1/3)X га.
Учитывая условие задачи, получаем уравнения:
(4/9)X + (1/3)X = 630
Упрощаем:
(4/9 + 1/3)X = 630
(4/9 + 3/9)X = 630
(7/9)X = 630
Умножаем на 9:
7X = 5670
Делим на 7:
X = 810
Итак, общая площадь всей земли в совхозе составляет 810 га.