На доске написаны три двузначных числа, одно из которых начинается на 5, второе — на 6, а третье — на 7. Учитель попросил трёх учеников, чтобы каждый из них выбрал какие-нибудь два из этих чисел и сложил их. У первого ученика получилось 111, ответы второго и третьего — различные трёхзначные числа, начинающиеся на 13. Чему может равняться число, начинающееся на 7? Если ответов несколько, укажите их все.
Если число начинается на 5, то оно может быть только 57. Поэтому первый ученик сложил 57 с двумя другими числами.
Так как у второго и третьего учеников получились трехзначные числа, начинающиеся на 13, то они сложили 57 с числами 134 и 137 (или наоборот).
Следовательно, число, начинающееся на 7, может равняться 134 или 137.