(6a²+5a -4)/ (3a²+19a +20)
Разложим 6a²+5a -4 на множители
6a²+5a -4 = 0
D = 5*5 +4*6*4 = 121
a₁ = (-5 +11)/12 = 1/2
a₂ = (-5 -11)/12 = -4/3
6a²+5a -4 = 6(a -1/2)(a+4/3) = (2a-1)(3a+4)
Разложим 3a²+19a +20 на множители
3a²+19a +20 = 0
D = 19*19 - 4*3*20 = 121
a₁ = (-19 +11)/6= -4/3
a₂ = (-19 -11)/6 = -5
3a²+19a +20 = 3(a+4/3)(a+5) = (3a+4)(a+5)
Тогда
(6a²+5a -4)/ (3a²+19a +20) = ((2a-1)(3a+4))/((3a+4)(a+5)) = (2a-1)/(a+5)
Ответ: (2a-1)/(a+5)
(6a²+5a -4)/ (3a²+19a +20)
Разложим 6a²+5a -4 на множители
6a²+5a -4 = 0
D = 5*5 +4*6*4 = 121
a₁ = (-5 +11)/12 = 1/2
a₂ = (-5 -11)/12 = -4/3
6a²+5a -4 = 6(a -1/2)(a+4/3) = (2a-1)(3a+4)
Разложим 3a²+19a +20 на множители
3a²+19a +20 = 0
D = 19*19 - 4*3*20 = 121
a₁ = (-19 +11)/6= -4/3
a₂ = (-19 -11)/6 = -5
3a²+19a +20 = 3(a+4/3)(a+5) = (3a+4)(a+5)
Тогда
(6a²+5a -4)/ (3a²+19a +20) = ((2a-1)(3a+4))/((3a+4)(a+5)) = (2a-1)/(a+5)
Ответ: (2a-1)/(a+5)