Параллелограмм. Определить длину стороны. В параллелограмме PQRT проведены биссектрисы углов PQR и QRT. Биссектрисы пересекаются в точке К. Точка К принадлежит отрезку РТ параллелограмма PQRT. Известно, что сторона RT=13,25. Определите длину стороны РТ.

24 Фев 2023 в 19:40
149 +1
0
Ответы
1

Так как биссектрисы угла PQR и QRT пересекаются в точке К, то треугольник KQR является равнобедренным, так как углы QKR и KQR равны. Также треугольник KRT является правильным, так как угол T равен 90 градусов (параллелограмм).

Из свойств равнобедренного треугольника можно выразить, что KT=KR. То есть KT=13,25/2=6,625. Так как KT и TR являются катетами прямоугольного треугольника KRT, то длина гипотенузы RT равна: RT=sqrt(KT^2+TR^2)=sqrt(6.625^2+13.25^2)=sqrt(43.8125+175.5625)=sqrt(219.9375)=14,83.

Ответ: длина стороны RT равна 14,83.

16 Апр в 16:37
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 548 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир