Это определение говорит о том, что алгебраическая бинарная операция ∗ называется ассоциативной, если выполнены следующие условия:
Для любых элементов a, b, c из множества A выполняется равенство a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Существуют элементы a, b, c из множества A, для которых выполняется равенство a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Для любого элемента a из множества A существует уникальный элемент e из множества A такой, что для всех элементов b из множества A выполняется равенство e ∗ b = b.
Таким образом, ассоциативная бинарная операция ∗ обладает свойством ассоциативности, то есть результат операции не зависит от порядка скобок, в котором выполняются операции.
Это определение говорит о том, что алгебраическая бинарная операция ∗ называется ассоциативной, если выполнены следующие условия:
Для любых элементов a, b, c из множества A выполняется равенство a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Существуют элементы a, b, c из множества A, для которых выполняется равенство a ∗ (b ∗ c) = (a ∗ b) ∗ c.
Для любого элемента a из множества A существует уникальный элемент e из множества A такой, что для всех элементов b из множества A выполняется равенство e ∗ b = b.
Таким образом, ассоциативная бинарная операция ∗ обладает свойством ассоциативности, то есть результат операции не зависит от порядка скобок, в котором выполняются операции.