Для того чтобы найти значение х в уравнении 81 = 3^(x/10), нужно взять логарифм по основанию 3 от обеих сторон уравнения. Это позволит избавиться от показателя степени и найти значение х.
Логарифмируем обе стороны уравнения: log3(81) = log3(3^(x/10))
Преобразуем правую часть с помощью свойства логарифма: loga(a^b) = b log3(81) = x/10
Найдем значение логарифма от 81 по основанию 3: log3(81) = 4 Так как 3^4 = 81
Подставляем найденное значение обратно в уравнение: 4 = x/10
Для того чтобы найти значение х в уравнении 81 = 3^(x/10), нужно взять логарифм по основанию 3 от обеих сторон уравнения. Это позволит избавиться от показателя степени и найти значение х.
Логарифмируем обе стороны уравнения:
log3(81) = log3(3^(x/10))
Преобразуем правую часть с помощью свойства логарифма: loga(a^b) = b
log3(81) = x/10
Найдем значение логарифма от 81 по основанию 3:
log3(81) = 4
Так как 3^4 = 81
Подставляем найденное значение обратно в уравнение:
4 = x/10
Умножаем обе стороны на 10:
40 = x
Итак, x = 40.